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An experimental and theoretical investigation is made of the unsteady lift and drag
exerted on a sphere in a nominally steady, high Reynolds number, incompressible
flow. The net force on the sphere has previously been ascribed to fluctuations in the
bound vorticity in the meridian plane normal to the force, produced by large-scale
coherent structures shed into the wake. A simplified model of vortex shedding is
proposed that involves coherent eddies in the form of a succession of randomly
orientated vortex rings, interconnected by pairs of oppositely rotating line vortices,
and shed at quasi-regular intervals with a Strouhal number ∼ 0.19. The rings are
rapidly dissipated by turbulence diffusion, but it is shown that only the nascent vortex
ring makes a significant contribution to the surface force, and that the force spectrum
at Strouhal numbers exceeding unity is effectively independent of the shape of the
fully formed vortex. Predictions of the lift and drag spectra at these frequencies are
found to be in good accord with new towing tank measurements presented in this
paper.

1. Introduction
A sphere in a nominally steady and incompressible high Reynolds number flow is

subject to unsteady drag and side forces. Rayleigh (1877) attributed the side force on
a spinning tennis ball to the Magnus effect, associated with the establishment of mean
circulation about the sphere in a meridian plane at right angles to the force. For
a non-spinning sphere Willmarth & Enlow (1969), Achenbach (1974), and Taneda
(1978) have suggested that the circulation is caused by the asymmetric shedding of
large turbulent eddies into the wake, which produces an unsteady bound vorticity
vector (directed through the centre of the sphere) whose cross-product with the mean
stream velocity determines the fluctuating force. The side component of the force has
no preferred orientation in a plane normal to the free stream direction, but nonetheless
it is usually referred to as the unsteady lift. It is responsible, for example, for the
erratic path of a rising weather balloon (Scoggins 1967), and for the unpredictable
trajectory of a baseball thrown at medium speed with very little spin (a ‘knuckle ball’)
or of a cricket ball whose seam is at zero angle of incidence to its direction of motion
(Barton 1982). Unsteady side and drag forces can also cause harmful vibrations in
support structures (Parkinson 1989; Williamson & Govardhan 1997). Similarly, the
wake-induced forces produce unsteady buffeting of spherical hydrophones moored in
a water basin where a mean flow may be generated by surface waves, tidal changes, or
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gravity. According to Finger, Abbagnaro & Bauer (1979), Keller (1977), McEachern
& Lauchle (1995) and Gabrielson, Gardner & Garrett (1995) the problem can be
severe for a neutrally buoyant ‘acoustic velocity’ hydrophone that is designed to follow
the fluid motion produced by an incident sound wave (Leslie, Kendall & Jones 1956).

Vortex shedding from a sphere at large Reynolds numbers occurs predominantly
at a Strouhal number fD/U ≈ 0.2, where f denotes frequency, D is the diameter
of the sphere, and U is the undisturbed stream velocity (Achenbach 1972, 1974;
Sakamoto & Haniu 1990; Taneda 1956, 1978; Willmarth & Enlow 1969; Kim &
Durbin 1988; Chomaz, Bonneton & Hopfinger 1993). In addition, a higher frequency
motion at a Strouhal number that increases with the Reynolds number Re = UD/ν
(ν = kinematic viscosity) has been detected in measurements of the velocity fluctu-
ations immediately behind the sphere when Re > 800. However, the spectrum of
the unsteady lift generally turns out to be very broadband, with no significant
‘discrete’ contributions at either of these Strouhal numbers. Willmarth & Enlow
(1969) report measurements of the lift for a sphere in air, whose spectrum exhibits
smoothly varying behaviour at Strouhal numbers 6 0.3 in the ‘supercritical’ range
4.84× 105 6 Re 6 1.67× 106.

There have hitherto been no published measurements of the spectrum of the
unsteady drag experienced by a sphere, nor of its magnitude relative to the lift.
Tomboulides, Orszag & Karniadakis (1993) calculated the fluctuating drag using a
‘large-eddy simulation’ of the wake at Re = 20 000, but made no comparison with
the lift. Numerical simulations at Re < 1000 have also been performed by Johnson
& Patel (1999), Mittal (1999) and Tomboulides & Orszag (2000); these calculations
confirm that the wake becomes asymmetric when Re exceeds 350–450, and that the
drag at these Reynolds numbers is five or six times larger than the lift. However,
according to a numerical study by Zierke (1997), the time-dependent drag experienced
by a freely falling sphere at a Re = 1000 is an order of magnitude smaller than the
lift. Data presented later in this paper (§ 4) indicate that this is also true at higher
Reynolds numbers, at least for Re as large as about 17 000. This is consistent with the
corresponding results for a cylinder in a cross-flow (Goldstein 1965; Phillips 1956)
where the root-mean-square lift is also an order of magnitude larger than that of the
drag (West & Apelt 1993).

The unsteady lift and drag on a sphere in high Reynolds number flow are studied
analytically in this paper in terms of a model of asymmetric vortex shedding. The
investigation is motivated by the observation by Willmarth & Enlow (1969) that the
large measured fluctuating forces are strongly correlated with fluctuations in the bound
vorticity, which in turn is attributed to the shedding of large-scale coherent structures,
even at supercritical Reynolds numbers (Re > 3.7× 105) when the boundary layer on
the sphere is turbulent. The general characteristics of the wake have been summarized
by Sakamoto & Haniu (1990) for subcritical, low and intermediate Reynolds number.
In particular, ‘hairpin’ vortices are found in the wake when 300 < Re < 420. When
Re exceeds about 800 large-scale vortex loops are observed to move away from the
sphere, rotating at random about an axis parallel to the flow through the centre of
the sphere. The wake becomes turbulent at Re ∼ 2000. At higher subcritical Reynolds
numbers (6000 < Re < 370 000) the separated flow becomes completely turbulent,
but the velocity spectrum in the wake loses some of the broadband nature observed
at lower Reynolds numbers; the Strouhal frequency of ‘coherent’ shedding increases
with Reynolds number and then approaches the constant value of about 0.19 at
Re ∼ 20 000.

Flow visualizations by Taneda (1978) at Re = 3.5 × 105 reveal that the laminar
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Figure 1. Vortex shedding from a sphere modelled by a sequence of
randomly orientated vortex rings.

boundary layer on the sphere separates at φ ∼ 100◦, where φ is measured from the
forward stagnation point. Reattachment occurs as a turbulent boundary layer near
φ ∼ 117◦, and the turbulent layer finally separates from the sphere at about 135◦.
Reversed flow exists close to the surface within the separation bubble and a vortex ring
is formed. The large-scale structure of the wake is similar to that observed at lower
subcritical Reynolds numbers; it is asymmetric and contains a succession of hairpin-
type vortices which, in the region immediately downstream of separation, appear as
quasi-periodically spaced vortex loops or rings. According to Taneda, the lines of
laminar and turbulent separation actually vary randomly from the nominal values
quoted above by about ±10◦ and ±12◦ respectively. The near wake may therefore be
imagined to consist of a succession of vortex rings that are connected one to another
by pairs of oppositely rotating line vortices offset from the streamwise axis through
the centre of the sphere; the rings are shed quasi-periodically at a Strouhal number
∼ 0.19 with randomly varying orientation. These structures are rapidly dissipated at
the higher Reynolds numbers by turbulence in the downstream wake but, because
of their coherence during shedding, are responsible for the large-scale fluctuations in
bound vorticity and for the observed lift and drag fluctuations.

On the basis of these observations, the influence of the coherent vortex structures
in the near wake will be modelled by considering an ensemble of realizations of a
succession of randomly orientated vortex rings, as indicated in figure 1. A crude model
of this kind is evidently a gross oversimplification, if only because the vortex street
would in practice be rapidly destroyed by turbulence diffusion. However, significant
fluctuations in the bound vorticity can occur only during the shedding of a vortex
ring, and it will be shown that the principal contribution to the surface force is indeed
supplied by the nascent vortex ring, and therefore that the subsequent evolution
of the vortex street has little bearing on the dominant lift and drag fluctuations
experienced by the sphere. The model would need to be refined if it is also desired to
incorporate modifications of the flow that occur when the sphere is located in a mean
turbulent stream (Hunt et al. 1990), and also in applications where the influence of a
neighbouring sidewall (of a wind tunnel, say) is important.

The predictions of the lift and drag spectra supplied by the model are found to
be in good accord with measurements in the Strouhal number range 1 < fD/U 6 40
made by towing a sphere at constant velocity in water (Wang 1999). These Strouhal
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numbers are important in applications involving spherical hydrophones, and both
the theoretical predictions and measurements indicate that the lift and drag spectra
decrease like 1/f3 in this interval. This high-frequency behaviour is shown to be
governed by the initial stages of vortex ring formation, and to be relatively insensitive
to the geometry of the fully formed vortex ring. Predictions at lower frequencies
(fD/U < 1) are more critically dependent on the assumed statistics of the vortex
rings, and to the presence of neighbouring structures such as a wind tunnel wall, but
are nonetheless consistent with the early measurements of the lift spectrum made by
Willmarth & Enlow (1969).

The analytical model is formulated in § 2; formulae for the lift and drag spectra are
derived in § 3. The towing tank experiment is described in § 4, where Wang’s (1999)
measurements are compared with predictions of the model.

2. Vortex shedding at high Reynolds number

2.1. Vortex ring model of shed vortices

Consider a rigid sphere of radius R situated with its centre at the origin of the
rectangular coordinates (x, y, z) in the presence of a nominally steady, incompressible
flow at speed U in the positive x-direction. The Reynolds number is sufficiently
large that the wake flow is turbulent. The dominant characteristics of the large-
scale coherent behaviour of the wake will be modelled by the sequence of vortex
rings depicted schematically in figure 1. The rings are shed from the sphere quasi-
periodically at frequency ∼ fo and Strouhal number fo D/U ∼ 0.2, where D = 2R.

The vortex rings are assumed to translate in the mean stream direction with their
centres on the x-axis at a constant convection velocity Uc ≈ 0.7U. The nth ring has
circulation Γ (in the sense illustrated in figure 1), radius a and the normal nn to
the plane of the ring makes an angle θn (0 6 θn 6 π/2) with the positive x-axis; the
azimuthal angle between the y-direction and the plane defined by the x-axis and the
normal is denoted by ϕn. Variations in the shape of a ring during shedding from the
sphere are ignored. According to this view, the most important influences determining
the unsteady forces on the sphere during shedding are the orientation of the rings
and their mean convection velocity. Shedding is pictured to occur by the translation
of each ring through the surface of the sphere, so that the duration of shedding for
the nth ring is δtn = 2a sin θn/Uc. If shedding starts for this ring at time t = tn, it is
complete when t = tn + δtn, and the position x = xn(t) of the centre of the ring on
the x-axis is given by

xn = Uc(t− tn) +
√
R2 − a2 cos2 θn − a sin θn, t > tn. (2.1)

Figure 1 illustrates the situation when about one half of the nascent vortex ring is
formed; the semi-circular arc of the ring already shed into the flow has a net circulation
in the anti-clockwise sense. There will accordingly be a clockwise circulation around
the sphere, producing an overall ‘lift’ force in the y-direction. The net circulation
around the sphere decreases as more of the vortex is shed, and vanishes when the
vortex separates and moves away into the wake. In this latter phase there is no mean
circulation around the sphere, so that any surface forces will tend to be small until a
new vortex begins to form. The proposed shedding mechanism can therefore produce
quasi-periodic and potentially large-amplitude fluctuations in the lift.
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2.2. Calculation of the surface forces

The net force exerted on the sphere in the i-direction in incompressible flow can be
expressed in the form (Howe 1989, 1998)

Fi(t) = ρo

∫
∇Xi · ω ∧ v d3x− η

∮
S

ω ∧ ∇Xi · dS , (2.2)

where ρo, η are respectively the mean density and shear viscosity of the fluid, v(x, t)
is the fluid velocity, and ω ≡ curl v is the vorticity. The integrations are taken
respectively over the volume occupied by the fluid and over the surface of the sphere
(where the vector surface element dS is directed into the fluid), and

Xi = xi

(
1 +

R3

2|x|3
)

(2.3)

is an auxiliary function that coincides with the velocity potential of an ideal flow past
the sphere that has unit speed in the i-direction at large distances from the sphere.
The surface integral in (2.2) represents the surface force produced by the viscous
skin friction and will be discarded, since its relative contribution at high Reynolds
numbers is small. Equation (2.2) is exact for incompressible flow when the body is
at rest, and its utility depends on the accuracy with which the vorticity ω and the
velocity v can be specified.

Thus, if Fin(t) denotes the component of the force attributable to the nth vortex
ring,

Fi(t) =

∞∑
n=−∞

Fin(t), (2.4)

where

Fin(t) = 0, t < tn

= ρo

∫
∇Xi · ωn ∧ v d3x, t > tn, (2.5)

and ωn(x, t) is the vorticity distribution of the nth vortex.
To evaluate the volume integral the cross-section of the vortex ring core is assumed

to be infinitesimal. To fix ideas, consider the case in which the nth ring is orientated
with its normal nn in the (x, y)-plane (i.e. ϕn = 0). Let s = aξ denote curvilinear
distance along the axis of the core in the right-handed sense with respect to nn, where
the angle ξ is measured from the ‘lower’ point of intersection of the ring and the
(x, y)-plane (where y < 0, see figure 2). The instantaneous velocity v must satisfy the
no-slip boundary condition on the sphere, but we take v = (Uc, 0, 0) on the ring to
account for uniform convection of the vortex parallel to the mean stream at constant
speed Uc in the x-direction, so that

ωn ∧ v d3x = ΓUc(0, cos ξ, cos θn sin ξ)adξ, (2.6)

and

Fin(t) = ρoUcΓa

∫ ξn(t)

−ξn(t)

(
cos ξ

∂Xi

∂y
+ cos θn sin ξ

∂Xi

∂z

)
dξ, t > tn. (2.7)

In this formula ξn(t) = π for t > tn + δtn, after the vortex is released by the sphere.
At earlier times ξn(t) is the angle illustrated in figure 2, determined by the points of
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Figure 2. View from downstream and above of a vortex ring separating from the sphere at A and
B when ϕn = 0. The angle ξn(t) determines the total arc length 2aξn(t) of the shed vortex during
separation.

intersection (A and B in the figure) of the vortex with the surface of the sphere:

ξn(t) =
π

2
+ sin−1

(
x2
n(t) + a2 − R2

2axn(t) sin θn

)
, tn < t < tn + δtn, (2.8)

where xn(t) is the x-coordinate of the centre of the vortex ring given by (2.1). The
derivatives ∂Xi/∂y, ∂Xi/∂z are evaluated on the vortex ring at the integration point
given parametrically by

x = (xn(t) + a sin θn cos ξ, −a cos θn cos ξ, −a sin ξ). (2.9)

2.3. The unsteady lift and drag

When ϕn = 0, it is evident by symmetry that the contribution F n of the nth vortex
ring to the net force on the sphere can be resolved into a ‘lift’ in the y-direction and
a drag in the x-direction. The mean lift must vanish, but the root-mean-square lift
is the same in all directions transverse to the mean flow, and may be evaluated by
considering its value in the y-direction. Indeed, when ϕn 6= 0 the component of the
lift Ln, say, in the y-direction is obtained by first evaluating it for ϕn = 0 by taking
Xi = Xy ≡ y(1 + R3/2|x|3) in (2.7), and then multiplying by cosϕn to obtain

Ln = ρoUcΓa cosϕnFn(t− tn) (2.10)

where

Fn(t− tn) = 0, t < tn

=

∫ ξn(t)

−ξn(t)
cos ξ

[
1 +

R3(x2
n(t) + 2axn(t) cos ξ sin θn + a2(1− 3 cos2 θn)

2(x2
n(t) + 2axn(t) cos ξ sin θn + a2)5/2

]
dξ,

t > tn. (2.11)

The drag Dn produced by the nth vortex ring is independent of ϕn and is calculated
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Figure 3. Variation of (a) the non-dimensional lift Ln/ρoUcΓa cosφn, and (b) the drag
Dn/ρoUcΓa, during shedding from the sphere when a = 0.7R, θn = π/8.

by setting Xi = Xx in (2.5). This yields

Dn = ρoUcΓaGn(t− tn) (2.12)

where

Gn(t− tn) = 0, t < tn

=
3aR3 cos θn

2

∫ ξn(t)

−ξn(t)
(xn(t) + a cos ξ sin θn) dξ

(x2
n(t) + 2axn(t) cos ξ sin θn + a2)5/2

, t > tn. (2.13)

These integrals must be evaluated numerically. After release of the vortex from the
sphere (so that ξn(t) = π) the magnitudes of the lift and drag decay very rapidly, and
satisfy

Ln

ρoUcΓa
∼ πR3 cosϕn
U3
c (t− tn)3

,
Dn

ρoUcΓa
∼ 3πaR3 cos θn

U4
c (t− tn)4

whenUc(t− tn)� R.

Figure 3 illustrates the dependence of the non-dimensional lift Ln/ρoUcΓa cosϕn
and drag Dn/ρoUcΓa on time for the case in which a = 0.7R, θn = π/8. The lift grows
rapidly during the initial stages of shedding, attaining a maximum when roughly half
the ring vortex has been formed; the subsequent release of vorticity of opposite sign
reduces the net circulation around the sphere and causes the lift to decrease. After
release the lift force slowly decays and is negligible when the ring has convected
about a sphere diameter into the wake. On the other hand, the drag increases
monotonically until the vortex is released, following which it decreases slowly and
becomes negligible when the ring is about three diameters downstream. These results
imply that the behaviour of the vortex in the distant wake (where it is not permissible
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to ignore the influences of turbulence diffusion and the misalignment of the vortex
centres produced by self-induction) makes a very limited contribution to the unsteady
surface force.

Equation (2.8) indicates that, in the initial stages of formation of the vortex, when
Uc(t− tn)� R,

ξn(t) ≈
(

2Uc(t− tn)
a

)1/2
√ √

R2 − a2 cos2 θn

a sin θn[
√
R2 − a2 cos2 θn − a sin θn]

,

which implies that

Ln

ρoUcΓa
,

Dn

ρoUcΓa
∼
(
Uc(t− tn)

a

)1/2

whenUc(t− tn)� R. (2.14)

In § 3 we shall make use of the following small-time approximation:

Ln

ρoUcΓa cosϕn
≈ 3

√
2Uc(t− tn)

a

[
1−

( a
R

)2

cos2 θn

]
×
[ √

R2 − a2 cos2 θn

sin θn[
√
R2 − a2 cos2 θn − a sin θn]

]1/2

, (2.15)

which is valid for Uc(t− tn)� a sin θn.

3. The lift and drag spectra
3.1. The mean drag

Periodic vortex shedding from the sphere can be simulated by assuming that the nth
vortex ring begins to form at time

tn = nτ, τ ≡ 1

fo

, (3.1)

where the fundamental frequency fo ∼ 0.2U/D. The magnitude of the circulation Γ
will be expressed in terms of the mean drag coefficient CD of the sphere. To do this
the representation (2.12) is used to write the mean drag in the form

〈D(t)〉 = ρoUcΓa

∞∑
n=−∞
〈Gn(t− tn)〉 (3.2)

where the angle brackets denote an average over an ensemble of realizations of the
train of vortex rings. Introduce

Ĝn(ω) =
1

2π

∫ ∞
0

Gn(t)eiωt dt, (3.3)

the Fourier transform of Gn(t), and write

〈D(t)〉 = ρoUcΓa

∫ ∞
−∞

∞∑
n=−∞
〈Ĝn(ω)〉e−iω(t−nτ) dω. (3.4)
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Figure 4. Dependence of the calculated circulation Γ on 〈θ〉 ≡ 〈θn〉 for two cases in which θn is
uniformly distributed about the mean.

The mean value 〈Ĝn(ω)〉 is independent of n, and the Fourier expansion (Lighthill
1958)

∞∑
n=−∞

eiωnτ =
2π

τ

∞∑
m=−∞

δ

(
ω − 2πm

τ

)
, (3.5)

therefore implies that

〈D(t)〉 =
2πρoUcΓa

τ

∞∑
m=−∞

〈Ĝn(2πmfo)〉e−2πimfot, (3.6)

which shows how the ensemble-average drag varies with time at the fundamental
shedding frequency fo. The mean drag D is obtained by averaging with respect to
time, to obtain

D =
2πρoUcΓa

τ
〈Ĝn(0)〉 ≡ ρoUcΓa

τ

∫ ∞
0

〈Gn(t)〉 dt. (3.7)

However, D = CD
1
2
ρoU

2A (A = πR2), so that equation (3.7) supplies

Γ

UR
=
πCD

2

R

a

U

Uc

/
1

τ

∫ ∞
0

〈Gn(t)〉 dt. (3.8)

The plots in figure 4 reveal that the circulation Γ is only weakly dependent on
the extent of the range spanned by the vortex orientation angle θn. This figure shows
the dependence of Γ/URCD determined by (3.8) for the two cases in which θn/〈θ〉 is
assumed to be uniformly distributed respectively over the intervals (0.5, 1.5) and (0.9,
1.1) for a range of possible values of the mean orientation 〈θn〉 ≡ 〈θ〉, and for the
particular case in which a = 0.7R, Uc = 0.7U.

3.2. The spectrum of the lift fluctuations

The time-dependent lift experienced by the sphere in the y-direction is given by

L(t) = ρoUcΓa

∞∑
n=−∞

cosϕnFn(t− tn). (3.9)

The mean lift vanishes because 〈cosϕn〉 = 0, where the angle brackets denote
an ensemble average. When successive vortices are statistically independent



50 M. S. Howe, G. C. Lauchle and J. Wang

〈cosϕn cosϕm〉 = 1
2
δnm, and the mean-square lift becomes

〈L2(t)〉 =
(ρoUcΓa)

2

2

∞∑
n=−∞
〈F2

n(t− tn)〉. (3.10)

If F̂n(ω) is the Fourier transform defined in terms of Fn(t) as in equation (3.3), we
have

〈L2(t)〉 =
(ρoUcΓa)

2

2

∫∫ ∞
−∞

∞∑
n=−∞

〈
F̂n(ω)F̂∗n(ω′)

〉
e−i(ω−ω′)(t−nτ) dωdω′, (3.11)

where the asterisk denotes complex conjugate. As before, the ensemble average

〈F̂n(ω)F̂∗n(ω′)〉 does not depend on n, so that the expansion (3.5) (with ω replaced
by ω − ω′) leads to a time-averaged, mean-square lift

L2 =
π(ρoUcΓa)

2

τ

∫ ∞
−∞
〈|F̂n(ω)|2〉 dω. (3.12)

The one-sided frequency spectrum of the lift ΦL(ω) satisfies

L2 =

∫ ∞
0

ΦL(ω) dω, (3.13)

and we therefore have

ΦL(ω) = (ρoUcΓa)
2 2π

τ
〈|F̂n(ω)|2〉, (3.14)

where the remaining average is to be taken over all possible orientations θn of a
vortex ring with respect to the direction of the undisturbed mean stream.

Figure 5(a) illustrates predictions of the lift spectrum 10 log10((U/D)ΦL(ω)/
(CDρoU

2A)2) (dB) plotted as a function of ωD/U, where A = πR2 is the frontal area
of the sphere, for the two cases 〈θ〉 = 10◦, 30◦. Permissible vortex orientation angles θn
are assumed to occupy the interval 1

2
< θn/〈θ〉 < 3

2
with a = 0.7R, Uc = 0.7U. Average

values have been computed using an ensemble of 100 vortex rings.
Both spectra are essentially the same for ωD/U > 10, and decay like 1/ω3

at high-frequencies. The high-frequency dependence is governed by the behaviour
of the lift force during the initial stages of formation of a vortex ring. In fact,
the ω−3-dependence shown in figure 5(a) occurs because Ln ∝ √t− tn when

t− tn � a sin θn/Uc. By evaluating the Fourier transform F̂n(ω) from the small-time
approximation (2.15) we obtain (Lighthill 1958) the high-frequency representation

ΦL(ω) ∼ 9Uc(ρoUcΓa)
2

4τaω3

〈[
1−

( a
R

)2

cos2 θn

]2 [ √
R2 − a2 cos2 θn

sin θn[
√
R2 − a2 cos2 θn − a sin θn]

]〉
,

(3.15)

which is applicable for ωD/U � D/a sin θn. The prediction of this formula when
〈θ〉 = 30◦, using an ensemble of 100 vortex rings, is shown by the dotted straight line
in figure 5(a).

Evidently the high-frequency behaviour of the spectrum does not depend on our
assumption that the coherent eddies are modelled by vortex rings; in a more general
view of the problem the length a in the approximation (3.15) would be interpreted
as the radius of curvature of the initial thread of the large-scale vortex loops that are
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Figure 5. Non-dimensional lift spectrum 10 log10 ((U/D)ΦL(ω)/(CDρoU
2A)2) (dB) for Uc = 0.7U

when averaging is performed over ( 1
2
< θn/〈θ〉 < 3

2
): (a) a/R = 0.7 and 〈θ〉 = 10◦, 30◦, showing

also the asymptotic approximation (3.15) (• • •) evaluated for 〈θ〉 = 30◦; (b) 〈θ〉 = 30◦ and
a/R = 0.6, 0.7, 0.8.

periodically shed from the sphere. However, because it has been assumed that the
vortex core diameter is infinitesimal, the asymptotic approximation must break down
when ωD/U exceeds D/∆, where ∆ is a distance of the order of the initial vortex core
diameter. For the experiments described in § 4, D = 7.62 cm, so that estimating ∆ to
be initially about 0.1 cm, the present theory would become inapplicable when fD/U
exceeds about 102.

The dependence of these predictions on a/R, the ratio of the vortex ring radius
to that of the sphere, is illustrated in figure 5(b), again for 〈θ〉 = 30◦ and when
the other parameters are unchanged. The simplicity of the analytical model, and the
relative insensitivity of predictions to the diameter of the shed vortices, suggest that
the nominal value a/R = 0.7 is probably representative of a high Reynolds number
wake of reduced width immediately behind the sphere, and this value will be used in
the discussion below in § 4.

3.3. The spectrum of the drag fluctuations

The frequency spectrum ΦD(ω) of the unsteady drag

D′(t) = D(t)− 〈D〉,
is defined such that

D′2 =

∫ ∞
0

ΦD(ω) dω. (3.16)
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Figure 6. Schematic of the experimental arrangement: (a) the support lines of the sphere are
configured for the measurement of the side-force (i.e. ‘lift’) fluctuations. (b) End-view of tank
showing the configuration used for measuring the unsteady drag.

It is readily confirmed by following the procedure described above that

ΦD(ω) = (ρoUcΓa)
2 4π

τ
{〈|Ĝn(ω)|2〉 − |〈Ĝn(ω)〉|2}, (3.17)

where the averages are with respect to the orientations θn of the vortex rings. The
characteristics of the predicted spectrum are discussed in the next section.

4. Comparison with experiment
4.1. Experimental apparatus

Measurements of the unsteady lift and drag were made in the fibreglass towing tank
of working length 9.2 m illustrated schematically in figure 6(a). The cross-section
of the tank is 25.4 × 25.4 cm2 and it is filled with water to a depth of 22 cm. A
sphere of diameter 7.62 cm is supported in the water with its centre nominally on the
longitudinal centreline (the x-axis) of the tank by four flexible, nylon lines each of
which can withstand a tension of 89 N. The lines lie in a vertical meridian plane of
the sphere, inclined at 45◦ to the vertical, so that neighbouring lines meet the surface
of the sphere at an angular separation of 90◦. They are secured to a vertical frame
of aluminium rods bolted to the underside of a carriage suspended above the tank
from wheels running smoothly along a horizontal, 10 m composite fibreglass I-beam
mounted on an adjacent parallel concrete wall. The sphere can therefore execute small-
amplitude translational vibrations (< 1 mm in amplitude) in the direction normal to
the meridian plane. Figure 6(a) illustrates the configuration used for measuring the
unsteady lift, where the meridian plane is parallel to the direction of motion of the
carriage. The sphere translates parallel to the centreline of the tank at a constant mean
speed when the carriage is towed along the track by means of a closed-loop horizontal
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cable connected to a computer-controlled drive motor situated at one end of the track.
The apparatus is isolated from ambient vibrations in the measurement range of 10–
60 Hz by mounting the tank on resilient floor supports and by inserting vibration
dampers between the I-beam and the wall. A system involving an intermediate pulley
and two flexible drive belts is used to minimize vibration transmission from the motor,
which is itself placed in a foam-lined wooden box to minimize airborne noise from
the motor. As a final precaution, all measurements were made when the laboratory
automatic ventilation system was not in operation.

Two test spheres were constructed to facilitate separate measurements of the
unsteady drag and lift. Each is made from a 14 : 3 mixture by volume of polystyrene
micro-balloons and epoxy resin cast in a spherical mold. A Geospace Corporation
GS20-DH7 geophone is encased at the centre of a sphere during fabrication. The
signal cable from the geophone leaves the sphere at the rearward stagnation point
and is connected to a Hewlett Packard 3567A spectrum analyzer via a preamplifier.
The voltage output from the geophone is proportional to the velocity of the sphere,
and the geophone is orientated within the sphere with its axis normal to the meridian
plane of support. The output at different frequencies, when multiplied by frequency,
is proportional to acceleration which, in turn, is related to the component of the force
exerted on the sphere in the direction normal to the meridian plane by calibrating its
response against that of a standard accelerometer attached to the sphere when the
sphere is set into forced motion by a Wilcoxon Research F3 electromagnetic shaker.
The force is determined from Newton’s second law, including a correction to allow for
the added mass (one half of the mass of water displaced by the sphere). The unsteady
drag is measured by orientating the meridian plane of the aluminium support frame
perpendicular to the axis of the tank, as illustrated in figure 6(b).

To inhibit the formation of surface air bubbles each sphere was immersed for
30 min in a solution of Kodak Photo-Flo 200 wetting agent before each calibration
and measurement. The tests were performed by towing at one of four different speeds
of 10, 15, 20 and 25 cm s−1, corresponding to Reynolds numbers ranging from about
7000 to 17 000, and storing electronically the output from the geophone.

Similar towing tank measurements of the lift have been reported by Lauchle & Jones
(1998) for the case in which the sphere mimics a submerged hydrophone, suspended
as in practical applications. It was free to move with the unsteadiness created by the
flow over its surface, and the force was determined using a geophone of the kind
described above. However, the quality of force measurements is crucially dependent
on the mode of suspension of the sphere. Lauchle & Jones (1998) used a three-point
suspension, but the suspension lines did not lie in the same plane, and oscillations
of the sphere were therefore possible in directions other than that of the lift (the
z-direction in figure 2). This permitted the geophone to respond to the unsteady drag,
to the orthogonal (vertical) component of lift, and to moments created by the flow,
causing their measurements to underestimate the unsteady side force. Furthermore,
the three-point suspension cannot be used to measure the unsteady drag, because
the steady drag rotates the sphere backward from its towing orientation, thereby
causing the geophone to become misaligned with the streamwise (x-) direction. These
problems do not arise with the present four-point suspension system.

However, there are two important limitations that require comment. First, the
towing speed could not exceed about 25 cm s−1. At this speed in water at 20 ◦C, the
Reynolds number of a suspension line based on its diameter (0.033 cm) is about 82.
The wake behind a line is therefore laminar, and should have a negligible influence
on the unsteady force on the sphere. But, the aluminium support rods are 0.4 cm
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in diameter, with Reynolds number ∼ 988 at 25 cm s−1; their wakes are therefore
unstable and within the range of turbulent vortex cores, and could influence the force
measurement. Therefore, higher towing speeds were not considered.

Second, measurements were not made for frequencies greater than 60 Hz. Several
spurious peaks in the power spectra were observed at higher frequencies. These
peaks do not change with towing speed and can therefore be attributed to structural
resonances of the suspension system. Increasing the diameter (and the stiffness) of the
support rods will reduce these vibrations, but will also increase the Reynolds number
into the range where vortex shedding contaminates the force measurements.

The practical effect of these precautions is to eliminate ‘gross’, uncontrolled motions
of the sphere, while at the same time permitting the sphere to vibrate at very small
amplitude in either the lift or drag direction without degrading the sensitivity of the
geophone. The measured displacement of the sphere at frequencies exceeding 10 Hz
is so small that it cannot be seen with the naked eye. For a freely falling or tethered
sphere, on the other hand, large displacements from a uniform trajectory are observed
at frequencies comparable to the shedding frequency.

Further details of the construction of the apparatus and the experimental procedure
are given by Wang (1999).

4.2. Results

Spectral data were recorded during several runs at each towing speed, and the final
spectral level at each frequency was obtained by averaging over an ensemble of 100
time series. This is large enough to ensure that the random error at each velocity
does not exceed about ±0.4 dB. The corresponding errors when measurements at the
four different towing speeds are combined and plotted against Strouhal number were
about ±2 and ±3 dB respectively for the lift and drag. In all cases the background
noise for a stationary carriage was about 30 dB smaller than the measurements.

The solid circles in figures 7(a) and 7(b) respectively represent average measured val-
ues of the lift and drag spectra 10 log10((U/D)GL(f)/(ρoU

2A)2), 10 log10((U/D)GD(f)/
(ρoU

2A)2), plotted against the Strouhal number fD/U, where f = ω/2π is the fre-
quency in Hz, and

GL(f) = 2πΦL(ω), GD(f) = 2πΦD(ω). (4.1)

This normalization ensures that L2 =
∫ ∞

0
GL(f) df and D′2 =

∫ ∞
0
GD(f) df. The ver-

tical error bars in these figures indicate the spread of the experimental results for
the four different towing speeds, i.e. they represent a possible residual influence of
Reynolds number on the lift and drag over the range Re = 7000 to 17 000, or possibly
a Reynolds number effect associated with unsteady forces on the frame and support
lines.

Also shown in figure 7(a) are the low-frequency lift data from the experiments
conducted in air by Willmarth & Enlow (1969). These were performed at the very much
higher (supercritical) Reynolds numbers of 4.84×105, 8.26×105, 16.46×105, 16.67×105,
and the open squares in the figure represent results for each Strouhal number averaged
over these Reynolds numbers, the error bar again representing the data spread.

The solid and broken curves in figures 7(a) and 7(b) are the corresponding
predictions of GL(f), GD(f) determined by equations (3.14), (3.17) respectively for
〈θ〉 = 30◦, 10◦. As before the vortex orientation angles θn are assumed to occur within
the interval 1

2
< θn/〈θ〉 < 3

2
with a = 0.7R,Uc = 0.7U, and we have taken CD = 0.4.

This value for the drag coefficient is appropriate over the whole of the subcritical
region where Re > 103 (Schlichting 1979). Average values have been computed using
an ensemble of 100 vortex rings.
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Figure 7. Measured and predicted (a) lift spectrum 10 log10 ((U/D)GL(f)/(ρoU
2A)2) (dB) and

(b) drag spectrum 10 log10 ((U/D)GD(f)/(ρoU
2A)2) (dB): • • •, averaged measured values for

Re = 6680, 10 020, 13 360, 16 700. Predictions are shown for the two cases 〈θ〉 = 10◦, 30◦ when
averaging is performed over ( 1

2
< θn/〈θ〉 < 3

2
) and a = 0.7R, Uc = 0.7U, CD = 0.4. Also shown in

(a) is the low-frequency data of Willmarth & Enlow (1969).

At high Strouhal numbers both sets of theoretical curves decrease like 1/f3,
independently of the value of 〈θ〉, and this is close to the trend of the experimental
data. The remarkable accord in the absolute levels between theory and experiment
indicates that the proposed model, according to which the unsteady surface forces
are determined by coherent vortex shedding, is correct in principle if not in detail,
inasmuch as the high-frequency behaviour of the spectra is determined by the initial
stages in the shedding of a vortex structure. The wind tunnel experiments of Willmarth
& Enlow (1969) were performed in air at speeds between 50 and 150 ft s−1 (15.25 and
45.75 m s−1). In these experiments, when fD/U < 10−1 the length scale of disturbances
in the wake of the sphere ∼ U/f > 10D > 6 m, which is four times the smallest cross-
sectional dimension of the wind tunnel and comparable to the length of the working
section of the tunnel. At very low frequencies a coherent vortex structure in the wake
will therefore extend beyond the end of the working section of the wind tunnel. In
these circumstances the free field calculations of §§ 2, 3 cannot represent correctly
the characteristics of the measured lift fluctuations, and this presumably accounts for
the ambiguous correspondence in figure 7(a) between theory and experiment at low
Strouhal numbers.

If one plots a swath that straddles the experimental data by the error bars indicated
on figure 7, the spectral predictions are within 2–4 dB of that swath. The spectral
swaths maintain the same slope as the theory but are shifted in magnitude by about
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4 dB from the theoretical levels at Strouhal numbers below 10. There is a ‘step’ in both
sets of data between Strouhal numbers of about 10 and 45. In this range most of the
data that are shown were obtained at the lowest towing speeds of 10 and 15 cm s−1

(Re = 6680–10 020). Measurements were not made at lower speeds because the signal-
to-background noise ratio was then unacceptable: for Re between 3000 and about 6000
there is a transition of the vortex rings from a laminar to a turbulent regime (Sakamoto
& Haniu 1990), and the signal is not strong enough to be measured reliably in this
transition region (or at lower Reynolds numbers). It is suspected that the measurement
uncertainties quoted above, of ±2 and ±3 dB respectively for the lift and drag, may
be slightly larger for 16 < fD/U < 45, but there was no way of establishing this
tolerance to any better accuracy. Consequently there is a small discrepancy between
the predicted and measured spectral slopes at higher Strouhal numbers.

It is particular noteworthy that for both theory and experiment the unsteady drag
fluctuations are 5 dB or more smaller than the lift fluctuations at high frequencies.
This is consistent with the numerical results of Zierke (1997).

5. Conclusion
A non-spinning sphere in high Reynolds number, nominally steady, incompressible

flow experiences unsteady lift and drag. Correlation measurements have linked the
net force on the sphere to fluctuations in the bound vorticity in the meridian plane
normal to the force, and it has long been conjectured that these fluctuations in bound
vorticity arise from the shedding of large-scale coherent structures into the wake, even
at supercritical Reynolds numbers. The model of coherent vortex shedding proposed
in this paper considers the wake to consist of a succession of randomly orientated
vortex rings, interconnected by pairs of oppositely rotating vortices, and shed at quasi-
periodic intervals at a Strouhal number ∼ 0.19. At high Reynolds number coherent
wake structures of this kind must be rapidly dissipated by turbulence diffusion.
However, the dominant surface force is determined by the nascent vortex ring and,
moreover, the force spectrum at Strouhal numbers fD/U > 1 is governed by the
initial stages of formation of the ring, and is therefore effectively independent of the
shape of the fully formed vortex. Predictions of the lift and drag spectra based on this
model are in close agreement with new towing tank measurements at intermediate
Reynolds number for fD/U > 1. At smaller Strouhal numbers the predictions are
more strongly influenced by hypotheses regarding the orientation and statistics of
vortex rings, but still exhibit an acceptable level of agreement with the earlier lift
measurements of Willmarth & Enlow (1969).
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